On stability and convergence of the population-dynamics in differential evolution
نویسندگان
چکیده
Theoretical analysis of the dynamics of evolutionary algorithms is believed to be very important to understand the search behavior of evolutionary algorithms and to develop more efficient algorithms. In this paper we investigate the dynamics of a canonical Differential Evolution (DE) algorithm with DE/rand/1 type mutation and binomial crossover. Differential Evolution (DE) is well-known as a simple and efficient algorithm for global optimization over continuous spaces. Since its inception in 1995, DE has been finding many important applications in real-world optimization problems from diverse domains of science and engineering. The paper proposes a simple mathematical model of the underlying evolutionary dynamics of a one-dimensional DEpopulation. The model shows that the fundamental dynamics of each search-agent (parameter vector) in DE employs the gradientdescent type search strategy (although it uses no analytical expression for the gradient itself), with a learning rate parameter that depends on control parameters like scale factor F and crossover rate CR of DE. The stability and convergence-behavior of the proposed dynamics is analyzed in the light of Lyapunov’s stability theorems very near to the islolated equilibrium points during the final stages of the search. Empirical studies over simple objective functions are conducted in order to validate the theoretical analysis.
منابع مشابه
A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملAPPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS IN STABILITY INDEX AND CRITICAL LENGTH IN AVALANCHE DYNAMICS
In this study, Stability analysis of snow slab which is under detonation has developed in the present model. The model has been studied by using the basic concepts of non-detonation model and concepts of underwater explosions with appropriate modifications to the present studies. The studies have also been extended to account the effect of critical length variations at the time of detonation an...
متن کاملConvergence, Consistency and Stability in Fuzzy Differential Equations
In this paper, we consider First-order fuzzy differential equations with initial value conditions. The convergence, consistency and stability of difference method for approximating the solution of fuzzy differential equations involving generalized H-differentiability, are studied. Then the local truncation error is defined and sufficient conditions for convergence, consistency and stability of ...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AI Commun.
دوره 22 شماره
صفحات -
تاریخ انتشار 2009